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ABSTRACT
The heating value of 35 biomass samples (wood, cereals) has been modeled

from mass% data for carbon, hydrogen, and nitrogen, as well as from infrared data.
Regression models have been obtained by application of a genetic algorithm for
variable selection and PLS for creation of models. Standard deviation of prediction
errors is typically 0.3 % for models from IR data, and 0.7 % for models from
elemental composition data.
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INTRODUCTION
Biomass is becoming increasingly important as a renewable source of energy, by

incineration as well as production of liquid biofuels, e. g. biodiesel or bioethanol.
Compared to the incineration of fossil fuels the overall CO2 balance is considerably
less affected by the usage of biomass. Typical biomass materials used for energy
production are wood and so-called energy grass. Special types of cereals have a
century old tradition in (bio-)alcohol production, recent developments also consider
cereal incineration.

An important property of a fuel is its heating value. The so called "higher
heating value" (HHV) is the enthalpy of complete combustion of a fuel with all
carbon converted to CO2, and all hydrogen converted to H2O. The higher heating
value is given for standard conditions (101.3 kPa, 25 oC) of all products and includes
the condensation enthalpy of water; it is generally used in the USA. In European
countries the "lower heating value" - not used in this study - is more common. It does
not include the condensation enthalpy of water [1].

Direct determination of the heating value requires time-consuming calorimetric
experiments, which hardly can be automated. Empirical equations have been
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published that relate the heating value of a fuel to its elemental composition.
Elemental analysis requires tedious laboratory work too, but can be automated. Early
mathematical models for coal date back to the late 19th century. Recently, modern
chemometric methods have been applied for prediction of heating values of plant
biomass from elemental composition [2].

Infrared spectroscopy (IR) and especially near infrared spectroscopy (NIR)
became important and routinely used methods for quantitative analyses and for
characterization and classification of technological materials and food. IR and NIR
can be applied much easier and faster than many other laboratory methods.
Chemometric methods allow the generation of multivariate regression models with
optimum prediction performance, most used is partial least-squares regression (PLS)
[3,4]. Moisture, ash, and heating value have been modeled from NIR data for fuel
mixtures of coal, peat, and biofuel [5].

The aim of this study was the development of PLS calibration models for the
prediction of higher heating values of wood samples and five different cereals, based
on IR reflectance data, and for comparison also on elemental composition data.

EXPERIMENTAL
Samples. A total of n = 35 samples was available, 20 from wood, 15 from

cereals. The wood samples consist of sawdust (spruce, pine and larch) with varying
amounts of additives such as bark, rye and maize flour, and starch. Cereal samples
are unmixed wheat, rye, barley, maize and triticale flours.

Calorimetry. The higher heating value of biomass, HHV, has been determined
by the bomb calorimetric method according to DIN 51900 T3 [2]. About 1 g biomass
material was used; range of measured HHV was 18,143 to 19,125 kJ/kg; typical
analysis errors are ±60 kJ/kg (ca 0.32 %). The experimental HHV values are used as
the dependent variable y for regression.

Elemental analysis. The contents of C, H, and N in a sample have been
measured by standard methods of elemental analysis as described in a previous work
[2]. The concentrations are given in mass% of dry material and have been used as
basic x-variables for regression.

Infrared spectroscopy. Spectra were recorded using a Bruker Equinox 55
Fourier Transform-Infrared (FTIR) spectrophotometer equipped with an Attenuated
Total Reflection (ATR) accessory and a deuterated triglycine sulfate (DTGS)
detector. ATR spectroscopy is a contact sampling method in which a crystal of a high
refractive index is used as an internal reflection element. The IR spectra in the range
of 4000-600 cm-1 were obtained at intervals of approximate 2 cm-1 giving 1764 data
points per spectrum. Preprocessing of spectra was performed by software
Unscrambler [6]: first step was averaging four neighboring absorbance values giving
an approximate resolution of 8 cm-1; second step was calculation of the first
derivative by the Savitzky-Golay algorithm (quadratic polynomial, three points). The
resulting 439 values are used as x-variables in regression.
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CHEMOMETRICS
A linear equation that predicts a dependent variable as a function of several

independent variables is of the general form
�  =  b0 + b1 x1 + b2 x2 + b3 x3 +…+ bp xp (1)

where ��is the predicted dependent variable (HHV), b0 the intercept, b1 to bp are
the regression coefficients, and x1 to xp the independent variables; p is the number of
independent variables. PLS regression [3,4] - as implemented in software
Unscrambler [6] - has been used for the development of such models. The objective
is a model with high prediction performance for cases not used in model building and
model optimization. In this study a repeated cross validation (CV) has been applied
for optimization of models and estimation of prediction errors. Because of the rather
small number of samples available, independent test sets have not been used. The
optimum number of PLS components, aPLS, has been determined by a leave-a-
quarter-out CV (four segments). From the CV-predicted values CV yi (i = 1 ... n) the
standard error of prediction for CV, SEPCV, has been calculated [3,4,7].

SEPCV  =  [ �(yi - CV �i - bias)2 / (n - 1) ] 0.5 i = 1 ... n (2)
The bias is the arithmetic mean of the prediction errors (yi - CV �i) which in all

cases was near zero. SEP is identical with the standard deviation of the prediction
errors. Four different random splits into four segments have been evaluated and the
obtained values for SEPCV averaged; this mean, SEPCV4 , is used as a criterion for the
prediction performance. In the case of normally distributed prediction errors (which
was approximately fulfilled with the used data) ±2.5 SEPCV4 is a reasonable
confidence interval.

For the elemental analysis data, the basic variable set consists of three variables
(mass% of C, H, and N). An augmented variable set has been created by adding
nonlinear transformations and combinations of the variables, defined by C2, H2, N2,
C�H, C/H, ln(C), ln(H), ln(N), ln(C�H), and ln(C/H), resulting in p = 13 variables.
Because the added variables are only mathematically defined, a variable selection has
been performed using a genetic algorithm (GA, see below) resulting in a variable set
with p = 5.

For IR data the original variable set consists of 439 variables. Application of a
genetic algorithm (GA, see below) resulted in a variable set with p = 21.

The principles of genetic algorithms (GA) and successful applications to
variable selection have been described by others [8,9]. The software used was
MobyDigs [10]. The regression method applied in this software is ordinary least
squares regression (OLS) and the performance (fitness) of models has been evaluated
by the adjusted correlation coefficient [11] between experimental HHV and predicted
HHV using full cross validation (leave-one-out). The adjusted correlation coefficient
considers the number of variables used for the model and penalized models with a
large number of variables. Population size used was 50, the maximum number of
selected features in a model is limited to 15 by the software. The variables selected in
the best 10 best models have been considered. In each trial about 650,000 models
were tested. Computation time was 15 minutes for the augmented elemental data set
(p = 13) and 35 minutes for the IR data set (p = 439) on a Pentium 2 GHz.
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RESULTS
The heating values, HHV, of cereal samples are in the range 18,143 to 18,594

(mean 18,389); all wood samples have higher HHV, with a range of 18,668 to 19,125,
and a mean of 18,915. The content of carbon shows the same trend with smaller
values for cereals (range 40.4 to 42.2%, mean 41.3) than for wood samples (range
46.3 to 47.9%, mean 47.4). Hydrogen and nitrogen contents are higher in cereal
samples than in wood samples (H: cereals 6.5 to 6.9%, wood 5.9 to 6.3%; N: cereals
0.9 to 2.2, wood 0.1 to 0.3%).

Figure 1 shows IR spectra from a maize sample and a wood sample. The spectra
look very similar and show typical absorptions bands, for instance at about 1000 cm-1

from C-OH, at about 1640 cm-1 from C=O, and at about 2920 cm-1 from C-H; the
broad band around 3300 cm-1 is from free OH (moisture).

The result of exploratory data analysis by principal component analysis (PCA) is
shown in Figure 2. For both data sets a clear separation of the cereals from the wood
samples appear. The loading plot for the element data (not shown) reflects the
different concentrations of C, H, and N in the two sample groups. The same
clustering appears in a dendrogram obtained by hierarchical cluster analysis.
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Figure 1. ATR-FTIR spectra of maize (thick line) and sawdust (spruce)
with 18 % bark (thin line).

Table 1. Cross-validated PLS models for the higher heating value of biomass derived from
elemental composition and infrared data, respectively. p, number of features; aPLS, number
of PLS components (averaged); SEPCV4 , standard error of prediction (average of four runs

of 4-fold cross validation).
p Features Methods aPLS SEPCV4 (kJ/kg)
3 C, H, N PLS 2 130
13 C, H, N, and derived features PLS 2 127
5 C, H2, C�H, C/H, ln(H) GA + PLS 2 124

439 all IR absorbances PLS 4 125
21 selected IR absorbances GA + PLS 12 62

absorbance

cm-1
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Figure 2. Principal Component Analysis (PCA) of (a) elemental analysis data (p =

13), and (b) IR data (p = 439) using autoscaled variables, with % preserved variances of
first and second principal component scores.

Modeling the HHV by only using the carbon content (univariate regression)
gives a standard prediction error, SEPCV4, of 132 kJ/kg. Using the three basic
variables from the elemental data (%C, %H, %N) gives 130 kJ/kg. Only a non
significant improvement is achieved for the augmented variables set (p = 13) with a
SEPCV4 of 127 kJ/kg. The variable set from GA selection with p = 5 gives a further
small improvement with a SEPCV4 of 124 kJ/kg. The best model from elemental data
has a standard prediction error of about 0.7 % of the mean of the HHV values (Table
1).

A model using all 439 IR variables has a similar prediction performance as
models with elemental data with a SEPCV4 of 125 kJ/kg. However variable selection
by GA resulted in a subset with 21 variables that gives a much better model with a
SEPCV4 of only 62 kJ/kg. This standard prediction error corresponds to 0.3 % of the
mean of the HHV values and to a confidence interval of about ±155 kJ/kg. In Figure 3
experimental HHV values are plotted versus predicted values obtained from the best
model using 21 IR absorbances; the squared Pearson correlation coefficient between
calorimetric determined HHV and IR-predicted HHV is 0.968.
  predicted HHV
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19200 Figure 3. Prediction of higher heating values
(HHV, kJ/kg) by a PLS model using 21 IR
absorbances selected by a genetic algorithm.
The predicted values are means from four
leave-a-quarter-out cross validation runs
with different partitioning of the segments.
Circles denote cereal samples, triangles
denote wood samples.
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CONCLUSIONS
Easily available IR reflection data are promising for the determination of heating

values of wood and cereal samples. Feature selection by a genetic algorithm
improved the prediction performance in comparison to models with all features. IR
data are better suited than elemental composition data. A single model can be used
for wood samples and cereal samples.
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